МИНИСТЕРСТВО ОБРАЗОВАНИЯ ИРКУТСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ИРКУТСКИЙ ТЕХНИКУМ МАШИНОСТРОЕНИЯ ИМ. Н.П. ТРАПЕЗНИКОВА»

Утверждена Приказом № 21/3-ОД от 11 февраля 2020 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОУД.09.Физика

по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей

Рабочая программа учебной дисциплины составлена на основе:

федерального государственного образовательного стандарта среднего общего образования, утвержденного приказом Министерства образования и науки РФ 17 мая 2012 года № 413, зарегистрированного в Минюсте России 7 июня 2012 года № 24480 (в редакции Приказов Минобрнауки России от 29.12.2014 № 1645, от 31.12.2015 № 1578, от 29.06.2017 № 613);

на основании Письма Департамента государственной политики в сфере подготовки рабочих кадров и ДПО от 17 марта 2015 года № 06-259 «По организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов»;

с учетом Методических рекомендаций по реализации федеральных государственных образовательных стандартов среднего профессионального образования по 50 наиболее востребованных и перспективных профессиям и специальностям от 20 февраля 2017 года № 06-156;

с учетомпримерной программы общеобразовательной учебной дисциплины «Физика» для профессиональных образовательных организаций, одобренной Научно-методическим советом Центра профессионального образования ФГАУ «ФИРО» и рекомендованной для реализации основной профессиональной образовательной программы СПО на базе основного общего образования с получением среднего образования, Протокол № 2 от 26.03.2015 г.

Организация-разработчик: государственное бюджетное профессиональное образовательное учреждение Иркутской области «Иркутский техникум машиностроения им. Н.П.Трапезникова».

Разработчик:

Т.Ю. Четина, преподаватель высшей квалификационной категории.

СОДЕРЖАНИЕ

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2. СТРУКТУРА ИСОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	7
3. УСЛОВИЯ РЕАЛИЗАЦИИ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	20
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	22

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОУД.09. Физика

1.1.Область применения программы

Рабочая программа учебной дисциплины является частью основной профессиональной образовательной программы среднего профессионального образования по специальности 23.02.07 Техническое обслуживание и ремонт двигателей, систем и агрегатов автомобилей. Рабочая программа разработана с учетом программы общеобразовательной учебной дисциплины «Физика» для профессиональных образовательных организаций (примерной), (одобрена Научно-методическим советом Центра профессионального образования ФГАУ «ФИРО» и рекомендованы для реализации основной профессиональной образовательной программы СПО на базе основного общего образования с получением среднего общего образования, протокол № 2 от 26.03.2015 г.

1.2. Место дисциплины в структуре основной профессиональной образовательной программы: учебная дисциплина входит в общеобразовательный цикл.

1.3. Цели и задачи дисциплины – требования к результатам освоения дисциплины:

Содержание программы «Физика» направлено на достижение следующих **целей**:

- 1) освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
- 2) овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практически использовать физические знания; оценивать достоверность естественнонаучной информации;
- 3) развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;
- 4) воспитание убежденности в возможности познания законов природы, использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;
- 5) использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды и возможность

применения знаний при решении задач, возникающих в последующей профессиональной деятельности.

Освоение содержания учебной дисциплины «Физика» обеспечивает достижение студентами следующих **результатов**:

личностных:

- 1) чувство гордости и уважения к истории и достижениям отечественной физической науки; физически грамотное поведение в профессиональной деятельности и быту при обращении с приборами и устройствами;
- 2) готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности и объективное осознание роли физических компетенций в этом;
- 3) умение использовать достижения современной физической науки и физических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;
- 4) умение самостоятельно добывать новые для себя физические знания, используя для этого доступные источники информации;
- 5) умение выстраивать конструктивные взаимоотношения в команде по решению общих задач;
- 6) умение управлять своей познавательной деятельностью, проводить самооценку уровня собственного интеллектуального развития;

метапредметных:

- 1) использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности;
- 2) использование основных интеллектуальных операций: постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов для изучения различных сторон физических объектов, явлений и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;
- 3) умение генерировать идеи и определять средства, необходимые для их реализации;
- 4) умение использовать различные источники для получения физической информации, оценивать ее достоверность;
 - 5) умение анализировать и представлять информацию в различных видах;
- 6) умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;

предметных:

1) сформированность представлений о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений, роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;

- 2) владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное использование физической терминологии и символики;
- 3) владение основными методами научного познания, используемыми в физике: наблюдением, описанием, измерением, экспериментом;
- 4) умения обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
 - 5) сформированность умения решать физические задачи;
- 6) сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни;
- 7) формированность собственной позиции по отношению к физической информации, получаемой из разных источников.

В результате освоения дисциплины обучающийся должен уметь:

- описывать и объяснять физические явления, свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; фотоэффект;
 - делать выводы на основе экспериментальных данных;
- приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики; различных видов электромагнитных излучений, квантовой физики в создании ядерной энергетики, лазеров;
 - применять полученные знания для решения физических задач;
 - измерять ряд физических величин;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

В результате освоения дисциплины обучающийся должен знать:

- смысл понятий: физическое явление, вещество, взаимодействие, электрическое поле, магнитное поле, волна, фотон, атом, атомное ядро;
- смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ 2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Объем образовательной программы	141
в том числе:	
теоретическое обучение	94
лабораторные работы	23
контрольные работы	4
Консультации	14
Промежуточная аттестация (экзамен во 2 семестре)	6

2.2. Тематический план

Содержание обучения	Количество часов
Введение	2
1. Механика	24
2. Основы молекулярной физики и термодинамики	20
3. Электродинамика	31
4. Колебания и волны	11
5. Оптика	12
6. Элементы квантовой физики	16
Всего:	121

2.2. Календарно-тематический план и содержание учебной дисциплиныОУД.09. Физика

Наименование	Содержание учебного ма	териала, лабораторные работы, самостоятельная работа обучающихся	Объем	Уровень
разделов и тем	Тема урока	Содержание учебного материала	часов	усвоения
1	2	3	4	5
Введение	1. Введение. Физика наука о природе.	Физика - фундаментальная наука о природе. Естественнонаучный метод познания, его возможности и границы применимости. Моделирование физических явлений и процессов. Эксперимент и теория. Роль эксперимента и теории в процессе познания природы.	1	1
	2. Физика в познании вещества, поля пространства и времени	Физическая величина. Погрешности измерений. Физические законы и их границы применимости. Основные элементы физической картины мира. Значение физики при освоении профессии сварщик.	1	1
Раздел 1. Механика	-			
Тема 1.1. Кинематика.	3. Механическое движение. Системы отсчета.	Механическое движение. Относительность механического движения. Системы отсчета. Путь, траектория, перемещение. Демонстрации: Зависимость траектории от выбора системы отсчета. Виды механического движения.	1	2
	4. Скорость. Равномерное прямолинейное движение.	Скорость. Средняя, мгновенная, относительная скорость. Равномерное прямолинейное движение.	1	2
	5. Равнопеременное прямо- линейное движение. Ускоре- ние.	Равнопеременное прямолинейное движение. Ускорение. Прямолинейное движение с постоянным ускорением. Криволинейное движение. Равномерное движение по окружности.	1	2
	6. Свободное падение.	Свободное падение. Движение тела, брошенного под углом к горизонту.	1	2
	7. Графики движения.	Графики движения. Графики движения.	1	2
	8. Решение задач.	Решение задач на определение скорости, пути, времени, координаты, ускорения	1	2
Тема 1.2. Законы механики Ньютона	9. Законы Ньютона.	Первый закон Ньютона. Принцип относительности Галилея. Сила. Масса. Способы измерения массы тел. Взаимодействие тел. Принцип суперпозиции сил. Второй закон Ньютона. Основной закон классической динамики. Третий закон Ньютона. Демонстрации: Зависимость ускорения тела от его массы и силы, действующей на тело. Сложение сил. Равенство и противоположность направления сил действия и противодействия.	1	2
	10. Закон всемирного тяготения. Сила тяжести.	Закон всемирного тяготения. Гравитационное поле. Сила тяжести. Вес тела. Ускорение свободного падения. Невесомость. Демонстрации: Невесомость.	1	2
	11. Силы в механике	Силы в механике. Сила упругости. Коэффициент жесткости. Закон Гука. Сила трения. Сила трения покоя и скольжения. Сила трения качения. Демонстрации: Зависимость силы упругости от деформации. Силы трения.	1	2

1	2	3	4	5
	12. Решение задач.	Решение задач на законы Ньютона определение суммарной силы, действующей на тело. Сложение сил.	1	2
	13-14. Лабораторная работа. Исследование движения тела под действием постоянной силы.	Исследование движения тела под действием постоянной силы.	2	2
	15. Лабораторная работа. Изучение особенностей силы трения (скольжения).	Изучение особенностей силы трения (скольжения).	1	2
Тема 1.3. Законы сохранения	16. Импульс. Закон сохранения импульса.	Импульс тела и импульс силы. Закон сохранения импульса и реактивное движение. Демонстрации: Реактивное движение.	1	2
в механике	17. Работа силы. Мощность.	Работа силы. Работа потенциальных сил. Работа и мощность.	1	2
	18. Решение задач.	Решение задач на расчет механической работы и мощности.	1	2
	19. Энергия. Потенциальная и кинетическая энергия.	Механическая энергия. Виды энергии. Потенциальная энергия. Кинетическая энергия. Закон сохранения механической энергии. Демонстрации: Переход потенциальной энергии в кинетическую энергию и обратно.	1	2
	20. Применение законов сохранения.	Закон сохранения механической энергии. Применение законов сохранения. Решение задач на расчет кинетической и потенциальной энергии и на применение закона сохранения энергии.	1	2
	21. Лабораторная работа. Изучение закона сохранения импульса	Изучение закона сохранения импульса	1	2
	22. Лабораторная работа. Сохранение механической энергии при движении тела.	Сохранение механической энергии при движении тела под действием силы тяжести и упругости	1	2
	23. Лабораторная работа. Сравнение работы силы с изменением кинетической энергии тела.	Сравнение работы силы с изменением кинетической энергии тела.	1	2
	24. Лабораторная работа. Изучение законов сохранения	Изучение законов сохранения на примере удара шаров и баллистического маятника.	1	2
	25. Повторение и обобщение материала раздела «Механи-ка»	Повторение и обобщение материала по теме «Механика». Подготовка к контрольной работе	1	2
	26.Контрольная работа по разделу «Механика»	Выполнить контрольную работу по теме «Механика»	1	

1	2	3	4	5
Раздел 4.1 Колебания				
Тема 4.1.Механические колебания и волны. Звук.	27. Механические колебания. Амплитуда, период, частота колебаний.	Колебательное движение. Механические колебания. Свободные и вынужденные механические колебания. Свободные затухающие механические колебания. Основные характеристики колебаний. Амплитуда, период, частота, фаза колебаний. Гармонические колебания. Линейные механические колебательные системы. Превращение энергии при колебательном движении. Демонстрации: Свободные и вынужденные механические колебания. Резонанс.	1	2
	28. Механические волны. Длина волны.	Упругие волны. Механические волны. Поперечные и продольные волны. Свойства механических волн. Основные характеристики волны. Длина волны. Скорость волны. Уравнение плоской бегущей волны. Интерференция волн. Понятие о дифракции волн. Демонстрации: Образование и распространение упругих волн.	1	2
	29. Решение задач.	Решение задач на определение амплитуды, частоты и периода колебаний, скорости и длины волны	1	2
	30. Звуковые волны. Ультразвук	Звуковые волны. Скорость звука в различной среде. Громкость звука. Высота тона. Ультразвук, свойства и его применение в технике и медицине. Демонстрации: Частота колебаний и высота тона звука.	1	2
	31. Лабораторная работа. Зависимость периода колебаний маятника от длины нити или массы груза	Изучение зависимости периода колебаний нитяного (или пружинного) маятника от длины нити (или массы груза).	1	
	лекулярной физики и термоди			
Тема 2.1. Основы МКТ. Идеальный газ.	32. Основные положения МКТ. Броуновское движение	История атомистических учений. Основные положения молекулярнокинетической теории (далее — МКТ). Масса и размеры молекул и атомов. Тепловое движение. Броуновское движение. Диффузия. Силы и энергия межмолекулярного взаимодействия. Демонстрации: Движение броуновских частиц. Диффузия.	1	2
	33. Агрегатное состояние вещества на основе МКТ. Идеальный газ.	Строение газообразных, жидких и твердых тел. Скорости движения молекул и их измерение. Объяснение агрегатных состояний вещества на основе атомно-молекулярных представлений. Идеальный газ. Модель идеального газа. Макроскопические параметры идеального газа: объем, давление и температура.	1	2
	34. Тепловое движение. Температура.	Тепловое движение. Температура и ее измерение. Термодинамическая шкала температуры. Абсолютный нуль температуры. Абсолютная температура как мера средней кинетической энергии частиц. Связь шкал Цельсия и Кельвина.	1	2
	35. Основное уравнение	Давление газа. Основное уравнение молекулярно-кинетической тео-	1	2

_

¹ Здесь и далее нумерация разделов программы приведена в соответствии с табл. 2.2.

1	2	3	4	5
	МКТ идеального газа.	рии газов. Связь между давлением и средней кинетической энергией молекул газа		
	36. Уравнение Менделеева- Клапейрона.	Уравнение состояния идеального газа (уравнение Менделеева- Клапейрона). Молярная газовая постоянная	1	2
	37. Газовые законы	Изопроцессы. Газовые законы. Демонстрации: Изменение давления газа с изменением температуры при постоянном объеме. Изотермический и изобарный процессы.	1	2
	38. Решение задач по теме: Основы МКТ. Идеальный газ.	Решение задач по теме: Основы МКТ. Идеальный газ.	1	2
Тема 2.2. Основы термодинамики	39. Внутренняя энергия. Работа газа. Количество теплоты.	Внутренняя энергия системы. Основные понятия и определения. Внутренняя энергия идеального газа. Два способа изменения внутренней энергии. Работа и теплота как формы передачи энергии. Работа газа. Количество теплоты. Теплоемкость. Удельная теплоемкость. Уравнение теплового баланса.	1	2
-	40. Первый закон термодинамики. Решение задач.	Первое начало термодинамики. Первый закон термодинамики. Применение 1 закона к различным процессам. Адиабатный процесс. Демонстрации: Изменение внутренней энергии тел при совершении работы.	1	2
	41. Тепловые двигатели. Охрана природы.	Тепловые двигатели. Устройство и КПД теплового двигателя. Принцип действия тепловой машины. Холодильные машины. Тепловые двигатели и охрана окружающей среды. Демонстрации:Модели тепловых двигателей.	1	2
	42. Необратимость тепловых процессов.	Второе начало термодинамики. Необратимость тепловых процессов. Второй закон термодинамики	1	2
Тема 2.3. Свойства жидкостей	43. Строение жидкости. Поверхностное натяжение и смачивание.	Модель строения жидкости. Характеристика жидкого состояния вещества. Поверхностный слой жидкости. Энергия поверхностного слоя. Поверхностное натяжение. Смачивание. Коэффициент поверхностного натяжения. Явления на границе жидкости с твердым телом. Капиллярные явления. Демонстрации: Явления поверхностного натяжения и смачивания.	1	2
Свойства паров ность 45. Ла Измер	44. Насыщенный пар. Влажность воздуха	Испарение и конденсация. Насыщенный пар и ненасыщенный пар. Насыщенный пар и его свойства. Парциальное давление. Точка росы. Абсолютная и относительная влажность воздуха. Кипение. Зависимость температуры кипения от давления. Перегретый пар и его использование в технике. Демонстрации: Кипение воды при пониженном давлении.	1	2
	45. Лабораторная работа. Измерение поверхностного натяжения жидкости	Измерение поверхностного натяжения жидкости	1	2

1	2	3	4	5
	46. Лабораторная работа. Измерение влажности воздуха.	Измерение влажности воздуха. Демонстрации: Психрометр и гигрометр.	1	2
Тема 2.5. Твердые тела.	47. Строение твердых тел.	Твердые тела. Характеристика твердого состояния вещества. Кристаллические и аморфные тела. Тепловое расширение твердых тел и жидкостей. Плавление и кристаллизация. Демонстрации: Кристаллы, аморфные вещества, жидкокристаллические тела. Модель строения твердых тел. Механические свойства твердых тел. Упругие свойства твердых тел. Закон Гука	1	2
	48. Лабораторная работа. Наблюдение процесса кристаллизации	Наблюдение процесса кристаллизации (Рост кристаллов соли из раствора)	1	2
	49. Лабораторная работа. Изучение деформации растяжения.	Изучение деформации растяжения.	1	2
	50. Лабораторная работа. Изучение теплового расширения твердых тел; воды.	Изучение теплового расширения твердых тел. Изучение особенностей теплового расширения воды.	1	2
B 4.3	51.Контрольная работа по разделу «Основы молеку-лярной физики и термодинамики»	Контрольная работапо разделу «Основы молекулярной физики и термодинамики»	1	
Раздел 3. Электродин Тема 3.1. Электрическое поле.	52. Электрический заряд. Закон сохранения заряда. Закон	Взаимодействие заряженных тел. Электрические заряды. Закон сохранения электрического заряда. Закон Куло-	1	2
	Кулона. 53. Электрическое поле. Напряженность и потенциал электрического поля.	на. Демонстрации: Взаимодействие заряженных тел. Электрическое поле. Напряженность электрического поля. Силовые линии. Принцип суперпозиции полей. Работа сил электростатического поля. Потенциал электрического поля. Разность потенциалов. Эквипотенциальные поверхности. Связь между напряженностью и разностью потенциалов электрического поля.	1	2
	54. Диэлектрики и проводники в электрическом поле.	Проводники и диэлектрики в электрическом поле. Поляризация диэлектриков. Демонстрации: Проводники в электрическом поле. Диэлектрики в электрическом поле.	1	2
	55. Электроемкость. Конденсатор. Решение задач	Электроемкость. Конденсаторы. Электроемкость уединенного проводника и конденсатора. Соединение конденсаторов в батарею. Энергия заряженного конденсатора. Энергия электрического поля. Решение задач на определение электроемкости и энергии конденсатора. Демонстрации: Конденсаторы.	1	2
Тема 3.2.	56. Электрический ток и его	Электрический ток. Условия, необходимые для возникновения и под-	1	2

1	2	3	4	5
Законы постоянного тока	характеристики	держания электрического существования тока. Сила тока, плотность тока, напряжение, электрическое сопротивление.		
Toku	57. Сопротивление проводника и виды соединений проводников	Зависимость электрического сопротивления от материала, длины и площади поперечного сечения проводника. Зависимость электрического сопротивления проводников от температуры. Соединения проводников. Расчет сопротивлений электрических цепей.	1	2
	58. Решение задач на расчет сопротивления и силы тока и виды соединений проводников.	Решение задач на расчет сопротивления и силы тока. Решение задач на виды соединений проводников	1	2
	59. Источник тока. ЭДС источника	Источник тока. Электродвижущая сила источника тока. Соединение источников электрической энергии в батарею.	1	2
	60. Законы Ома.	Закон Ома для участка цепи. Закон Ома для участка цепи без ЭДС. Законы Ома для полной цепи. Измерение силы тока и напряжения.	1	2
	61. Тепловое действие электрического тока. Мощность тока.	Тепловое действие электрического тока. Закон Джоуля — Ленца. Работа и мощность электрического тока. Демонстрации: Тепловое действие электрического тока.	1	2
	62. Лабораторная работа. Изучение закона Ома для участка цепи	Изучение закона Ома для участка цепи, последовательного и параллельного соединения проводников.	1	2
	63. Лабораторная работа. Изучение закона Ома для полной цепи	Изучение закона Ома для полной цепи	1	2
	64. Лабораторная работа. Определение ЭДС и внутреннего сопротивления источника тока	Определение ЭДС и внутреннего сопротивления источника тока (напряжения)	1	2
	65. Лабораторная работа. Определение КПД электрического чайника.	Определение коэффициента полезного действия электрического чайника.	1	2
	66. Лабораторная работа. Определение температуры нити лампы накаливания.	Определение температуры нити лампы накаливания.	1	2
	67. Обобщение и повторение материала по разделу «Электродинамика»	Обобщение и повторение учебного материала по электродинамике. Решение задач. Подготовка к контрольной работе за I курс.	1	2
Тема 3.3. Электрический ток в полупроводниках.	68. Полупроводники. Полупроводниковые приборы	Полупроводники. Собственная проводимость и примесная проводимость полупроводников. Демонстрации: Собственная и примесная проводимость полупроводников. Полупроводниковый диод. Полупроводниковые приборы. Демонстрации: Полупроводниковый диод.	1	2

1	2	3	4	5
		Транзистор.		
Тема 3.4. Магнитное поле	69. Магнитное поле. Вектор магнитной индукции.	Постоянные магниты и магнитное поле электрического тока. Опыт Эрстеда. Взаимодействие токов. Демонстрации: Опыт Эрстеда. Взаимодействие проводников с токами. Вектор магнитной индукции поля. Магнитный поток. Принцип суперпозиции магнитного поля. Правило буравчика.	1	2
	70. Сила Ампера.	Действие магнитного поля на прямолинейный проводник с током. Сила и закон Ампера. Работа по перемещению проводника с током в магнитном поле.	1	2
	71. Электроизмерительные приборы. Принцип действия электродвигателя.	Устройство и принцип действия электроизмерительных приборов Де- монстрации: Электроизмерительные приборы. Устройство и принцип действия электродвигателя. Демонстрации: Электродвигатель.	1	2
	72. Сила Лоренца	Действие магнитного поля на движущийся заряд Сила Лоренца. Определение удельного заряда. Ускорители заряженных частиц. Демонстрации: Отклонение электронного пучка магнитным полем.	1	2
	73. Решение задач по теме «Магнитное поле»	Решение задач по теме «Магнитное поле»	1	2
Tema 3.5. Электромагнитная индукция.	74. Электромагнитная индукция.	Магнитный поток. Электромагнитная индукция. Опыты Фарадея. Закон электромагнитной индукции. Демонстрации: Электромагнитная индукция. Опыты Фарадея.	1	2
	75. Правило Ленца.	Правило Ленца. Решение задач на закон ЭМИ.	1	2
	76. Лабораторная работа. Изучение явления электромагнитной индукции.	Изучение явления электромагнитной индукции.	1	2
	77. Опыты Генри. Самоиндукция.	Опыты Генри. Самоиндукция. Вихревое электрическое поле. Демонстрации: Зависимость ЭДС самоиндукции от скорости изменения силы тока и индуктивности проводника.	1	2
	78. Индуктивность.	Индуктивность катушки. Энергия магнитного поля.	1	2
	79. Трансформатор.	Трансформатор. Коэффициент трансформации. Демонстрации: Трансформатор.	1	2
	80. Использование ЭМИ в современной технике.	Использование ЭМИ в современной технике.	1	2
	81. Решение задач по теме «Электромагнитная индукция»	Решение задач по теме «Электромагнитная индукция»	1	2
	82. Контрольная работа по разделу «Электродинамика»	Выполнить контрольную работу по разделу «Электродинамика»	1	2
Раздел 4. Колебания				_
Тема 4.2. Электромагнитные	83. Свободные электромагнитные колебания.	Свободные электромагнитные колебания. Колебательный контур. Превращение энергии в колебательном контуре. Формула Томсона.	1	2

1	2	3	4	5
колебания и волны		Затухающие электромагнитные колебания. Демонстрации: Свобод-		
	0.4.7	ные электромагнитные колебания.		
	84. Решение задач на приме-	Решение задач на формулу Томсона и электромагнитные колебания	1	2
	нение формулы Томсона			
	85. Вынужденные электро-	Вынужденные электромагнитные колебания. Генератор незатухаю-	1	2
	магнитные колебания. Резо-	щих электромагнитных колебаний. Резонанс.		
	нанс.			
	86. Переменный ток.	Переменный ток. Закон Ома для электрической цепи переменного то-	1	2
		ка. Емкостное и индуктивное сопротивление переменного тока. Де-		
		монстрации: Осциллограмма переменного тока. Конденсатор в цепи		
	0- D -	переменного тока. Катушка индуктивности в цепи переменного тока		
	87. Работа и мощность пере-	Работа и мощность переменного тока	1	2
	менного тока			
	88. Генератор переменного	Генерирование переменного тока. Генераторы тока. Принцип дейст-	1	2
	тока.	вия генератора переменного тока. Трансформаторы. Токи высокой		
		частоты. Демонстрации: Резонанс в последовательной цепи перемен-		
		ного тока. Работа электрогенератора.		
	89. Передача электроэнергии	Получение, передача, потребление и распределение электроэнергии.	1	2
	на расстояние	Проблемы энергосбережения.		
	90. Лабораторная работа	1. Индуктивное и ёмкостное сопротивления в цепи переменного тока	1	
	91. Электромагнитные вол-	Электромагнитное поле как особый вид материи. Электромагнитные	1	2
	ны.	волны, их свойства. Вибратор Герца. Открытый колебательный кон-		
		тур. Скорость распространения электромагнитных волн.		
	92. Решение задач.	Решение задач на расчет периода, частоты колебаний, скорости и дли-	1	2
		ны волны		
	93. Радио- и СВЧ-волны в	Радио - и СВЧ – волны в средствах связи. Понятие о радиосвязи. Изо-	1	2
	средствах связи. Радиотеле-	бретение радио А.С. Поповым. Применение электромагнитных волн.		
	фонная связь.	Демонстрации: Излучение и прием электромагнитных волн. Радиоте-		
		лефонная связь. Радиовещание. Демонстрации: Радиосвязь.		
Раздел 5. Оптика.				
Тема 5.1.	94. Свет - электромагнитная	Природа света. Свет - электромагнитная волна. Скорость распростра-	1	2
Природа света.	волна. Отражение волн. За-	нения света. Принцип Гюйгенса. Отражение волн. Закон отражения		
	кон отражения света.	света. Угол падения и угол отражения. Изображение в плоском зерка-		
		ле. Зеркальное и диффузное отражение. Демонстрации: Законы от-		
		ражения света.		
	95. Преломление света. Пол-	Закон преломление света. Угол преломления. Показатель преломле-	1	2
	ное отражение света.	ния. Полное внутреннее отражение света. Демонстрации: Законы		
	_	преломления света. Полное внутреннее отражение.		
	96. Линзы.	Линзы. Виды линз. Оптическая сила линзы. Формула тонкой лин-	1	2
		зы.Построение изображений в линзах. Ход основных лучей для по-		

1	2	3	4	5
		строения. Решение задач на построение в линзах.		
	97. Лабораторная работа. Изучение изображения предметов в тонкой линзе.	Изучение изображения предметов в тонкой линзе.	1	2
	98. Оптические приборы.	Глаз оптическая система. Оптические приборы. Лупа, микроскоп, телескоп. Демонстрации: Оптические приборы.	1	2
Тема 5.2. Волновые свойства света	99. Дисперсия света.	Дисперсия света. Опыт Ньютона. Спектр.Поляризация света. Поляризация поперечных волн. Поляризация света. Двойное лучепреломление. Поляроиды. Демонстрации: Получение спектра с помощью призмы. Спектроскоп. Поляризация света Понятие о голографии.	1	2
	100. Интерференция света. Опыт Юнга. Использование интерференции в науке и технике	Интерференция света. Когерентность световых лучей. Условия максимума и минимума. Опыт Юнга. Интерференция в тонких пленках. Полосы равной толщины. Кольца Ньютона. Использование интерференции в науке и технике. Просветление оптики. Демонстрации: Интерференция света.	1	2
	101. Дифракция света. Дифракционная решетка.	Дифракция света. Дифракция на щели в параллельных лучах. Демонстрации: Дифракция света. Получение спектра с помощью дифракционной решетки. Дифракционная решетка.	1	2
	102. Лабораторная работа. Изучение интерференции и дифракции света	Изучение интерференции и дифракции света	1	2
	103. Спектр электромагнитных волн. Виды электромагнитных излучений.	Виды спектров. Спектры испускания. Спектры поглощения. Линейчатый спектр. Спектральный анализ и его применение. Шкала электромагнитных излучений. Различные виды электромагнитных излучений, их свойства и практическое применение. Ультрафиолетовое и инфракрасное излучения. Рентгеновские лучи. Их природа и свойства. Демонстрации: Линейчатые спектры различных веществ.	1	2
	104. Лабораторная работа. Градуировка спектроскопа и определение длины волны спектральных линий.	Градуировка спектроскопа и определение длины волны спектральных линий.	1	2
	105. Контрольная работа по разделу «Оптика»	Выполнить контрольную работу по разделу «Оптика»	1	2
Раздел 6. Элементы Тема 6.1. Квантовая оптика	квантовой физики. 106. Тепловое излучение. Фотон.	Квантовая гипотеза Планка. Энергия кванта. Фотоны. Корпускулярные и волновые свойства фотонов. Дуализм света. Решение задач на	1	2
квантовая оптика		свойства фотонов	1	2
	107. Фотоэффект. Уравнение фотоэффекта.	Опыты Столетова. Фотоэффект и его законы. Внешний фотоэлектрический эффект. Внутренний фотоэффект. Работа выхода. Красная гра-	1	2

1	2	3	4	5
		ница фотоэффекта. Уравнение Эйнштейна. Демонстрации: Фотоэффект.		
Тема 6.2. Физика атома.	108. Опыт Резерфорда. Поглощение и испускание света.	Развитие взглядов на строение вещества. Строение атома. Опыты Резерфорда. Планетарная модель атома. Ядерная модель атома. Постулаты Бора. Поглощение и испускание света атомом. Модель атома водорода по Н. Бору. Закономерности в атомных спектрах водорода.	1	2
	109. Лазер. Использование лазера	Квантовые генераторы. Принцип действия лазера. Использование лазера. Демонстрации: Излучение лазера (квантового генератора).	1	2
Тема б.3. Физика атомного ядра.	110. Строение атомного ядра. Изотопы. Энергия расщепления ядра.	Строение атомного ядра. Состав атомного ядра. Протонно-нейтронная модель. Изотопы. Получение радиоактивных изотопов и их применение. Энергия расщепления ядра. Дефект массы, энергия связи и устойчивость атомных ядер.	1	2
	111-112. Решение задач на состав ядер различных элементов	Разбор состава ядер различных элементов.	1	2
	113. Естественная радиоактивность.	Способы наблюдения и регистрации заряженных частиц. Эффект Вавилова — Черенкова. Естественная радиоактивность. Закон радиоактивного распада. Альфа-, бета- и гамма-излучения. Демонстрации: Счетчик ионизирующих излучений.	1	2
	114-115. Ядерные реакции. Решение задач.	Ядерные реакции. Решение задач.	2	2
	116. Искусственная радиоактивность	Искусственная радиоактивность. Деление тяжелых ядер.	1	2
	117. Деление ядер урана. Цепная ядерная реакция.	Деление ядер урана. Цепная ядерная реакция. Управляемая цепная реакция.	1	2
	118-119. Ядерная энергетика. Биологическое действие радиоактивных излучений на живые организмы.	Ядерная энергетика. Ядерный реактор. Использование энергии деления ядер. АЭС. Биологическое действие радиоактивных излучений на живые организмы. Ядерное оружие. Ядерная безопасность.	2	
	120. Элементарные частицы.	Элементарные частицы.	1	2
	121. Обобщение материала по разделу «Элементы квантовой физики».	Обобщение материала по разделу «Элементы квантовой физики»	1	2
		Консультации	1.	4
		Промежуточная аттестация (экзамен во 2 семестре)	6	
		Итого по дисциплине:	14	1

3. УСЛОВИЯ РЕАЛИЗАЦИИ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ ОУД.09. ФИЗИКА

3.1. Материально-техническое обеспечение

Оборудование учебного кабинета «Физика»:

- посадочные места по количеству обучающихся;
- рабочее место преподавателя;
- комплекты плакатов и таблиц по учебной дисциплине «Физика»;
- диски с электронными образовательными ресурсами (презентации, виртуальные лабораторные работы, электронные учебники, видеофильмы по темам);
 - оборудование для лабораторных работ.

Технические средства обучения:

- компьютер с лицензионным программным обеспечением;
- мультимедиапроектор.

3.2. Информационное обеспечение обучения.

Перечень учебных изданий, Интернет-ресурсов, дополнительной литературы

3.2.1. Основные источники:

- 1. Касьянов В.А. Физика. 11 кл. Учебник. Базовый уровень. 5-е изд., дораб. М. Дрофа, 2015. 272 с.
- 2. Пинский А.А.. Физика. /Уч. 4 изд. испр. М.: Форум, НИЦ ИНФРА-М, 2017. 560 с. (Среднее профессиональное образование). ISBN 978-5-16-102411-9. Режим доступа: http://znanium.com/catalog/product/559355.

3.2.2. Дополнительные источники:

1. Ткачева, И.А. Физика: лаб. практикум / И.А. Ткачева. — 2-е изд., стер. — М.: ФЛИНТА, 2015. — 281 с. — ISBN 978-5-9765-2503-0. — Режим доступа: http://znanium.com/catalog/product/1036940.

3.3.3. Интернет ресурсы:

- 1. Академик. Словари и энциклопедии. Режим доступа: www.dic.academic.ru.
- 2. Анимации физических процессов. Трехмерные анимации и визуализации по физике, сопровождаются теоретическими объяснениями. Режим доступа: http://physics.nad.ru/.
- 3. Видеоуроки в сети Интернет: Видеоматериалы по механике, молекулярной физике, термодинамике и электродинамике. Режим доступа: http://interneturok.ru/ru/school/physics/10-klass.
- 4. BooksGid. Электронная библиотека. Режим доступа: www. booksgid. com.
- 5. Глобалтека. Глобальная библиотека научных ресурсов. Режим доступа: www. globalteka. ru.
- 6. Единая коллекция цифровых образовательных ресурсов. Режим доступа: www. school-collection. edu. ru.

- 7. Единое окно доступа к образовательным ресурсам. Режим доступа: www. window. edu. ru.
- 8. Естественно-научный журнал для молодежи «Путь в науку» Режим доступа: www. yos. ru/natural-sciences/html.
- 9. Издательский дом «Первое сентября». Учебно-методическая газета «Физика». Режим доступа: http://fiz.1september.ru/.
 - 10. Лучшая учебная литература. Режим доступа: www. st-books. ru.
- 11. Научно-популярный физико-математический журнал «Квант». Режим доступа: www. kvant. mccme. ru.
 - 12. Нобелевские лауреаты по физике. Режим доступа: www. n-t. ru/nl/fz.
- 13. Образовательные ресурсы Интернета Физика. Режим доступа: www. alleng. ru/edu/phys. htm.
 - 14. Подготовка к ЕГЭ. Режим доступа: www. college. ru/fizika.
- 15. Российский образовательный портал. Доступность, качество, эффективность. Режим доступа: www. school. edu. ru.
- 16. Сайт "Классная физика": Образовательные ресурсы сети интернет для основного общего и среднего (полного) общего образования. Режим доступа: http://class-fizika.narod.ru/.
- 17. Стандарт физического образования в средней школе. Обзор школьных программ и учебников. Материалы по физике и методике преподавания для учителей. Экзаменационные вопросы, конспекты, тесты для учащихся. Новости науки.— Режим доступа: http://www.edu.delfa.net/.
- 18. Учебно-методическая газета «Физика». Режим доступа: https://fiz.1september. ru.
- 19. Федеральный центр информационно-образовательных ресурсов. Режим доступа: www.fcior.edu.ru.
 - 20. Электронная библиотечная система. Режим доступа: www. ru/book.
- 21. Ядерная физика в Интернете. Режим доступа: www. nuclphys. sinp. msu. ru.

3.3. ТЕМЫ ИНДИВИДУАЛЬНЫХ ПРОЕКТОВ ПО ФИЗИКЕ

- 1. Александр Григорьевич Столетов русский физик.
- 2. Александр Степанович Попов русский ученый, изобретатель радио.
- 3. Альтернативная энергетика.
- 4. Акустические свойства полупроводников.
- 5. Андре Мари Ампер основоположник электродинамики.
- 6. Асинхронный двигатель.
- 7. Астероиды.
- 8. Астрономия наших дней.
- 9. Атомная физика. Изотопы. Применение радиоактивных изотопов.
- 10. Бесконтактные методы контроля температуры.
- 11. Биполярные транзисторы.
- 12. Борис Семенович Якоби физик и изобретатель.
- 13. Величайшие открытия физики.

- 14. Виды электрических разрядов. Электрические разряды на службе человека.
 - 15. Влияние дефектов на физические свойства кристаллов.
 - 16. Вселенная и темная материя.
 - 17. Галилео Галилей основатель точного естествознания.
 - 18. Голография и ее применение
 - 19. Движение тела переменной массы.
 - 20. Дифракция в нашей жизни.
 - 21. Жидкие кристаллы.
 - 22. Законы Кирхгофа для электрической цепи.
 - 23. Законы сохранения в механике.
 - 24. Значение открытий Галилея.
- 25. Игорь Васильевич Курчатов физик, организатор атомной науки и техники.
 - 26. Исаак Ньютон создатель классической физики.
 - 27. Использование электроэнергии в транспорте.
 - 28. Классификация и характеристики элементарных частиц.
 - 29. Конструкционная прочность материала и ее связь со структурой.
 - 30. Конструкция и виды лазеров.
 - 31. Криоэлектроника (микроэлектроника и холод).
 - 32. Лазерные технологии и их использование.
 - 33. Леонардо да Винчи ученый и изобретатель.
- 34. Магнитные измерения (принципы построения приборов, способы измерения магнитного потока, магнитной индукции).
 - 35. Майкл Фарадей создатель учения об электромагнитном поле.
 - 36. Макс Планк.
 - 37. Метод меченых атомов.
 - 38. Методы наблюдения и регистрации радиоактивных излучений и частиц.
 - 39. Методы определения плотности.
 - 40. Михаил Васильевич Ломоносов ученый энциклопедист.
 - 41. Модели атома. Опыт Резерфорда.
 - 42. Молекулярно-кинетическая теория идеальных газов.
 - 43. Молния газовый разряд в природных условиях.
- 44. Нанотехнология междисциплинарная область фундаментальной и прикладной науки и техники.
 - 45. Никола Тесла: жизнь и необычайные открытия.
 - 46. Николай Коперник создатель гелиоцентрической системы мира.
 - 47. Нильс Бор один из создателей современной физики.
 - 48. Нуклеосинтез во Вселенной.
 - 49. Объяснение фотосинтеза с точки зрения физики.
 - 50. Оптические явления в природе.
 - 51. Открытие и применение высокотемпературной сверхпроводимости.
 - 52. Переменный электрический ток и его применение.
 - 53. Плазма четвертое состояние вещества.
 - 54. Планеты Солнечной системы.

- 55. Полупроводниковые датчики температуры.
- 56. Применение жидких кристаллов в промышленности.
- 57. Применение ядерных реакторов.
- 58. Природа ферромагнетизма.
- 59. Проблемы экологии, связанные с использованием тепловых машин.
- 60. Производство, передача и использование электроэнергии.
- 61. Происхождение Солнечной системы.
- 62. Пьезоэлектрический эффект его применение.
- 63. Развитие средств связи и радио.
- 64. Реактивные двигатели и основы работы тепловой машины.
- 65. Реликтовое излучение.
- 66. Рентгеновские лучи. История открытия. Применение.
- 67. Рождение и эволюция звезд.
- 68. Роль К. Э. Циолковского в развитии космонавтики.
- 69. Свет электромагнитная волна.
- 70. Сергей Павлович Королев конструктор и организатор производства ракетно-космической техники.
 - 71. Силы трения.
 - 72. Современная спутниковая связь.
 - 73. Современная физическая картина мира.
 - 74. Современные средства связи.
 - 75. Солнце источник жизни на Земле.
 - 76. Трансформаторы
 - 77. Ультразвук (получение, свойства, применение).
 - 78. Управляемый термоядерный синтез.
 - 79. Ускорители заряженных частиц.
 - 80. Физика и музыка.
 - 81. Физические свойства атмосферы.
 - 82. Фотоэлементы.
 - 83. Фотоэффект. Применение явления фотоэффекта.
 - 84. Ханс Кристиан Эрстед основоположник электромагнетизма.
 - 85. Черные дыры.
 - 86. Шкала электромагнитных волн.
 - 87. Экологические проблемы и возможные пути их решения.
 - 88. Электронная проводимость металлов. Сверхпроводимость.
 - 89. Эмилий Христианович Ленц русский физик.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ ОУД.09. ФИЗИКА

Контрольи оценка результатов освоения дисциплины осуществляется преподавателемв процессе проведения учебных занятий и лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, подготовки сообщений и рефератов. Оценка результатов освоения учебной дисциплины проводится в форме экзамена.

Результаты обучения	Формы и методыконтроля и оценки результатов			
(освоенные умения, усвоенные знания)	обучения			
Уметь:	лабораторные работы (выполнение работы,			
- описывать и объяснять физические явления,	заполнение отчетов и таблиц), выполнение			
свойства газов, жидкостей и твердых тел; электро-	измерений, устный опрос, составление опор-			
магнитную индукцию, распространение электро-	ных конспектов, тестирование, решение за-			
магнитных волн; волновые свойства света; фото-	дач, наблюдение за деятельностью обучаю-			
эффект;	щегося, промежуточная аттестация по разде-			
- делать выводы на основе экспериментальных	лам,			
данных;	промежуточная аттестация в форме экзамена			
- приводить примеры практического использо-				
вания физических знаний: законов механики,				
термодинамики и электродинамики; различных				
видов электромагнитных излучений, квантовой				
физики в создании ядерной энергетики, лазеров;				
- применять полученные знания для решения				
физических задач;				
- измерять ряд физических величин;				
- воспринимать и на основе полученных знаний				
самостоятельно оценивать информацию, содер-				
жащуюся в сообщениях СМИ, Интернете, науч-				
но-популярных статьях;				
- использовать приобретенные знания и умения				
в практической деятельности и повседневной				
жизни.				
Знать:	Лабораторная работа (выполнение работы,			
- смысл понятий: физическое явление, вещест-	заполнение отчетов), устный опрос, реферат			
во, взаимодействие, электрическое поле, маг-	или сообщение на тему, тестирование, на-			
нитное поле, волна, фотон, атом, атомное ядро;	блюдение за деятельностью обучающегося,			
- смысл физических величин: скорость, ускоре-	промежуточная аттестация, промежуточная			
ние, масса, сила, импульс, работа, механическая	аттестация в форме экзамена			
энергия, внутренняя энергия, абсолютная тем-				
пература, средняя кинетическая энергия частиц				
вещества, количество теплоты, элементарный				
электрический заряд;				
- смысл физических законов классической ме-				
ханики, всемирного тяготения, сохранения				
энергии, импульса и электрического заряда,				
термодинамики, электромагнитной индукции,				
фотоэффекта;				
- вклад российских и зарубежных ученых, ока-				
завших наибольшее влияние на развитие физи-				
Tett				